
Scheduling of Computing Services
on Intranet Networks

Blaise Omer Yenke, Member, IEEE Computer Society,

Jean-François Mehaut, Member, IEEE Computer Society, and

Maurice Tchuente, Member, IEEE Computer Society

Abstract—Nowadays, enterprises can provide computing services through their intranet networks by letting their available resources

be used as virtual clusters for scientific computation during idle periods such as nights, weekends, and holidays. Generally, these idle

periods do not permit to carry out the computations completely. It is therefore necessary to save the context of uncompleted

applications for possible restart. This checkpointing mechanism is subject to resource constraints: the network bandwidth, the disk

bandwidth, and the delay T imposed for releasing the workstations. We first introduce a function bw that gives the bandwidth bwðm;V Þ
of a system during the checkpointing of m applications with aggregated memory requirement V . Assuming that this bandwidth is

shared equitably among the applications, the scheduling problem becomes a sequence of knapsack problems with nonlinear

constraints for which we propose approximate solutions. Experiments carried out on Grid5000 show that the running time of this

algorithm is negligible compared to the delay T which is of the order of few minutes. This means that the proposed scheduling

algorithm does not induce a significant overhead on the checkpointing process. As a consequence, our mechanism can be

incorporated in a batch scheduler.

Index Terms—Computing services, intranet networks, checkpoint scheduling, virtual clusters.

Ç

1 INTRODUCTION

DURING the last two decades, enterprise intranets have
grown considerably. Today they often consist of several

servers and hundreds of powerful workstations. The
resources of this infrastructure are unused on nights,
weekends, and holidays, releasing a great computing power.
It would thus be judicious to exploit these long idle periods
of the workstations in order to deliver computing services.

However, this infrastructure is becoming very hetero-
geneous, i.e., it includes various hardware, operating
systems, and applications. Therefore, performing intensive
computing services efficiently on such systems requires
additional efforts. Two main approaches dominate the use
of free resources of enterprise intranets as computation
infrastructure. The first approach consists in substituting
the screensaver program with an agent running the
computing service. The main drawback is that the comput-
ing service may be intrusive on the data files of interactive
users. In the second approach, a new operating system is
launched under the control of a virtual machine. The
execution of the computing service is then encapsulated in

the context of a new operating system. The drawback of this
approach is the great consumption of memory (two
operating systems are running on the same machine,
simultaneously) and the performance of computing service
may be highly altered by virtualization. In this work, we
adopt a new approach where machines are rebooted and
integrated in a virtual computing cluster.

In our context, a virtual cluster is a dynamic infra-
structure made up of distributed resources on the intranet
network. An extension of such a virtual cluster can even be
considered in grid environments [14]. The workstations
(under Windows or Linux) retained for the virtual cluster
are restarted with a diskless Linux boot with Compute-
Mode [1], as described in IGGI [12]. This approach differs
from the idea developed in SETI@home [2], where owners
voluntarily share the CPU cycles, thanks to the fact that they
incur no significant inconvenience from letting a guest
process run on their machines.

On a virtual cluster, the volatility of resources is one of
the constraints to be taken into account. Indeed, generally,
when the available resources of the intranet of an enterprise
are used as a virtual cluster for scientific computations,
the idle periods do not permit to completely carry out the
computations allocated to them. When some workstations
currently running some applications fA1; A2; . . . ; Ang must
be released within a delay T , it is necessary to save the
context of these applications for possible restart. However,
because of resource constraints, i.e., network and disk
bandwidths, it is not always possible to checkpoint all the
tasks within the delay T imposed for releasing the work-
stations. A good approach may be to save a collection of
tasks that maximize resource consumption. We assume here
that the resource consumption corresponding to a task is
proportional to the computation time not yet saved. We are

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 4, NO. 3, JULY-SEPTEMBER 2011 207

. B.O. Yenke is with the Department of Computer Science, Ngaoundere
Institute of Technology, PO Box 455, Ngaoundere, Cameroon, and also
with INRIA Mescal, CNRS LIG Lab., Grenoble, France.
E-mail: Blaise-Omer.Yenke@imag.fr.

. J-F. Mehaut is with INRIA Mescal, CNRS LIG Lab., Grenoble, France.
E-mail: Jean-Francois.Mehaut@imag.fr.

. M. Tchuente is with IRD UMI 209 UMMISCO, 32 Avenue Henri
Varagnat, 93 143 Bondy Cedex, France, and also with the Faculty of
Science, University of Yaounde I, UMMISCO PO Box 812, Yaounde,
Cameroon. E-mail: Maurice.Tchuente@ens-lyon.fr.

Manuscript received 15 May 2009; revised 14 Aug. 2009; accepted 23 Oct.
2009; published online 13 June 2011.
For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org, and reference IEEECS Log Number TSCSI-2009-05-0133.
Digital Object Identifier no. 10.1109/TSC.2011.28.

1939-1374/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

thus faced with an optimization problem which consists in
scheduling within the delay T , a collection of tasks
fAi1 ; Ai2 ; . . . ; Aikg that maximize the sum pi1þ pi2þ � � � þ pik
of computation time not yet saved subject to network and
disk bandwidths.

It is important to note that the checkpointing time also
depends on the memory requirements si1 ; si2 ; . . . ; sik of the
checkpointed tasks. Indeed, the total required memory of an
application is the most prominent component of the
checkpoint image size. It is wise to make a prediction on
the checkpoint time, assuming that all memory pages of an
application must be saved, even if in most situations, this is
not true. This prediction can be improved if we know in
advance the exact amount of data to be saved. Unfortunately,
such a prediction requires a great intrusion into the running
processes, and can severely impact applications perfor-
mances, thus it is not used here. Hereafter, we assume that it
is possible to statically estimate this memory requirement.

Out-of-core algorithms refer to applications where data do
not fit into the computer’s memory. These algorithms [13] are
explicitly optimized to fetch and access data stored in the
hard disk without the swapping features of operating
systems. The swapping feature is directly integrated in the
algorithm. The main problem for the out-of-core applications
is that the disk bandwidth is shared between applications’
operations and checkpointing. As far as there is no local disk
on the virtual cluster, the server and its disk would be a
bottleneck with respect to checkpointing operations and user
input/output operations. The architecture of virtual cluster is
clearly unsuitable for out-of-core applications. Here, we
assume that the application data fit into computers’ mem-
ories completely, hence applications don’t swap. This
corresponds to in-core that is the most common in high
performance computing, since a lot of computing clusters are
dataless and even diskless.

In this study, we do not want to save locally in order to
avoid disk problems (lack of space, failure, etc.), and because
a workstation may not be available for a long period of time.

Moreover, the checkpoint is performed on a unique server’s
disk as shown in Fig. 1.

The work presented here is based on the BLCR
Checkpoint/Restart implementation [11] which is an Open
Source, system-level checkpointer implemented as a GPL-
licensed loadable kernel module for Linux.

The approach proposed here to solve the deadline
constrained scheduling problem first determines the func-
tion bw that gives the aggregated bandwidth bwðm;V Þ
suitable for the parallel checkpointing of m applications of
aggregated size V . Then we introduce a loop where at any
time the tasks selected for checkpointing maximize
bwðm;V Þ while taking the deadline T into account.

Experiments carried out on Grid5000 [4] show that the
running time of the scheduling algorithm is of the order of
millisecond and is thus negligible compared to the delay T
which is of the order of few minutes. This means that the
proposed scheduling algorithm does not have a significant
overhead on checkpointing mechanisms.

The rest of this paper is organized as follows: Section 2
presents related work. In Section 3, we give a formalization
of the scheduling problem together with and approximation
scheme based on a new 0/1 knapsack problem where the
constraint involves the function bw. Section 4 presents the
knapsack algorithm proposed by Sartaj Sahni which
combines a semienumerative approach with a greedy
strategy. Section 5 gives the details of our scheduling
algorithm. Some experimental results are shown in Sec-
tion 6. Concluding remarks are made in Section 7.

2 RELATED WORK

In this section, we present some known results on virtual
computing environments and checkpointing strategies.

2.1 Virtual Computing Environments

The execution of intensive computation applications requir-
ing processor resources of intranet networks can be
achieved in different ways.

One approach allows end-users to explicitly donate
unused resources from their workstations to a shared pool.
Idle resources such as CPU cycles, memory and local storage
are harvested to serve a common distributed system. When a
machine is idle, an agent is started in the underlying
operating system to run scientific computing. The constraint
in this approach is that applications must be executed with
the libraries available in the native operating system. This
induces a large quantity of local storage and may interfere
with the principal user of the machine. This approach is used
in projects such as SETI@home [2] specialized in the search
for extraterrestrial intelligence, and Folding@home [22]
designed to perform computationally intensive simulations
of protein folding and other molecular dynamics.

Another approach is the use of virtual machines. Virtua-
lization technology allows to run multiple operating systems
(and applications) on a single physical machine. The guest
operating systems share the resources of the host machine.
With this approach, there is less interference on local storage
with the principal user of the machine. But running scientific
computation on virtual machines can severely impact the
applications’ performance, since applications as well as

208 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 4, NO. 3, JULY-SEPTEMBER 2011

Fig. 1. Architecture of the sytsem: parallel checkpointing with constraints
in virtual cluster.

virtual and native operating systems all share the same RAM.

VmWare [6], VirtualBox [5], and Xen [7] are open source

software that provide an abstraction layer, allowing each

physical machine to run several virtual machines.
The previous two approaches are interesting for environ-

ments where workstations are idle for short periods. When

workstations are idle for long periods (nights, weekends,

holidays), it is more advantageous to reboot the machines in

order to create a virtual computing environment (virtual

cluster), which is homogeneous with respect to the operating

system and where resources exploited are mainly CPU

cycles and RAM. This last approach avoids interference with

the workstation owners. For these reasons, this approach has

been adopted in this work.

2.2 Checkpointing Strategies

Checkpointing is a widely studied technique for the manage-

ment of resource volatility in cluster and grid environments.
Checkpointing is clearly a mechanism which, by saving

the application’s context onto stable storage that is connected

to the computation node through a network, prevents a

process from restarting from the initial state when a system

failure occurs. When restarted, a service resumes its

execution from the most recent checkpoint. Many imple-

mentations (application-level, library-level, kernel-level) of

checkpointing mechanisms have been proposed [11], [18],

[20], [21], [25], [29], [32].
In [10], several strategies for the distributed storage of

checkpoints are presented. Information dispersal and parity

algorithms introduced in [26] and [27] consist in splitting

data into redundant fragments. In [10], checkpoint data are

stored in a single cluster. In [28], the application of predictive

knowledge of resource availability to select reliable check-

point repositories on nondedicated networks was presented.

In all these studies, checkpoint data are first saved on the

local disk of the computation host, before being transferred

to the storage host. This approach cannot be used in our case

since we are working on cluster environments where the

unavailability of a workstation implies that the local

resources (in particular the disk) are no longer usable.

Furthermore, checkpointing followed by remote transfer

induces a checkpointing overhead. To avoid this, applica-

tions are checkpointed using an end-to-end bandwidth

(from the local memory of the host to the server’s disk).
Batch schedulers such as Condor [33] and Sun Grid

Engine [15], perform checkpointing at user-defined inter-

vals and store checkpoints onto a set of dedicated servers.
In [9] and [35], a random distribution of failure arrivals is

assumed and the ideal interval between checkpoints is

computed analytically. This interval is then used in a

periodic checkpointing mechanism.
The study presented here concerns the design of a module

which can be incorporated in a batch scheduler, provided

that checkpointing is realized using BLCR, and any releasing

order comprises a delay that is given to the system to let it

checkpoint the applications currently running on the

targeted resources.

3 PROBLEM DESCRIPTION AND APPROXIMATION

SCHEME

This section describes in detail the problem of maximizing
the aggregated computation time not yet saved under time
constraint, network, and disk bandwidths constraints. An
approximation scheme as a sequence of knapsack-based
problems is also provided here.

3.1 Problem Description

Consider n independent applications running on a virtual
cluster made of workstations of an intranet, one application
per node. We assume that the workstations must be
released before a delay T . We also assume that the
checkpoints are saved on the server’s disk—we avoid
saving locally as a workstation may be unavailable for the
virtual cluster for a long period of time. Because of the
competition to network and disk access, it is not sure that all
the applications can be checkpointed within the delay T .

Let us denote pi the resource consumption, i.e., the
computation time not yet saved of application i. The
problem to be solved is to select a subset fi1; i2; . . . ; irg of
applications that can be checkpointed within the delay T
and such that pi1 þ pi2 þ � � � þ pir is maximum. In this
formulation, the pis are large integers because we assume
that applications are long-running ones.

Finally, we are faced with the following problem:

maximize
X
i2E

pi�i

subject to Checkpointing� timefTaski; i 2 Eg � T:

(
ð1Þ

There is no simple and global formulation for the
constraint of this optimization problem. Indeed, any ap-
proach will first select a collection of tasks to start the
checkpointing process. Later, when the checkpointing of
these tasks is completed, the system will choose new
candidate tasks for inclusion in the set of tasks currently
being checkpointed. This leads to a loop. In the next section,
we propose an example of such a loop that produces an
approximate solution for this complex optimization problem.

3.2 Approximation Scheme

Consider the following notations:
E ¼ f1; . . . ; ng is the set of n applications to be

checkpointed. T is the checkpointing delay.
P ¼ fp1; . . . ; png is the set of applications weights. In our

context, pi represents the time elapsed since the beginning
of the execution of application i. pi is thus the computation
time not yet saved for application i.
S ¼ fs1; . . . ; sng, where si represents the memory re-

quirement of application i.
� ¼ f�1; . . . ; �ng, where �i ¼ 1 if application i is selected,

and �i ¼ 0 otherwise.
n� is the number of applications selected, i.e., such that

�i ¼ 1; n� ¼
Pn

i¼1 �i.
It can be seen experimentally that when saving a

distributed collection of m data blocks with aggregated
size V on a unique server, the performance of a system
decreases drastically when the couple ðm;V Þ exceeds a
certain threshold. This problem has been tackled in [34]
where a large number of experiments have been conducted

YENKE ET AL.: SCHEDULING OF COMPUTING SERVICES ON INTRANET NETWORKS 209

to assess the performance of the checkpointing device when
checkpointing several independent applications with BLCR.

This has led to an experimental estimation of the global
bandwidth bwðm;V Þ suitable for checkpointing m applica-
tions with aggregated memory requirement V . Let b denote
the minimum between the network and the server’s disk
bandwidths. For any couple ðm;V Þ, we must have
bwðm;V Þ � b. Hereafter, we assume that during the
checkpointing process, the global bandwidth bwðm;V Þ is
shared equitably among the m tasks, i.e., every application
is assigned a bandwidth bwðm;V Þ=m.

With these notations, the problem of selecting the
processes to be checkpointed is formalized as:

maximize
X
i2I

pi�i

subject to ðmaxfsi�igÞ
,

bw n�;
X
i2I

si�i

 !,
n�

" #
� T;

8>>><
>>>:

ð2Þ

where

. maxfsi�ig represents the largest memory require-
ment of the n� applications selected.

. bwðn�;
P

i2I si�iÞ=n� is the estimated bandwidth
dedicated to the checkpointing of each of the n�
processes selected.

. ðmaxfsi�igÞ=½bwðn�;
P

i2I si�iÞ=n�� represents the esti-
mated time for the checkpointing of the n� processes.

This problem is more complex than the classical 0/1
knapsack problem where the constraint is just the sum of
the sizes of the objects selected. The classical 0/1 knapsack
problem is NP-Complete [16]. For (2), we propose an
approach based on the algorithm (referred to as SS-Greedy)
proposed by Sartaj Sahni [30], for this knapsack problem
with nonlinear constraint.

Once a collection fi1; i2; . . . ; irg is selected by solving (2),
the system starts the checkpointing process. The task i that
minimizes ðfsi�igÞ=½bwðn�;

P
i2I si�iÞ=n�� will be check-

pointed at time t ¼ ðsi�iÞ=½bwðn�;
P

i2I si�iÞ=n�� while the
checkpointing of the other processes is still going on.
Hereafter, we assume that si1 � si2 �; . . . ;� sir . Therefore,
i ¼ ir. In order to use the bandwidth released by task i, we
must replace it with a task i 62 fi1; i2; . . . ; irg. This is done by
solving another instance of the knapsack problem (2) with the
memory requirements on I 0 ¼ I � fig defined as

s
0

i ¼
si � si; if i 2 fi1; i2; . . . ; irg;
si; otherwise:

�

However, since we don’t interrupt ongoing checkpointing,
the tasks i 2 fi1; i2; . . . ; ir�1g have priority. Fig. 2 shows the
diagram of the approximation scheme.

Let us now present the approximate algorithm intro-
duced in [30] for the classical 0/1 knapsack problem.

4 ALGORITHMS FOR THE 0/1 KNAPSACK PROBLEM

The 0/1 knapsack problem has been extensively studied in
the literature during the past five decades. Some recent
developments may be found in [17] and [19].

The 0/1 knapsack problem takes as input two sets of r
positive integers P ¼ fp1; p2; . . . ; prg and S ¼ fs1; s2; . . . ; srg,

and an integer M. The pis can be interpreted as the profit
associated with the objects i ¼ 1; 2; . . . ; r, and si may be the
size of object i. M is the size of the knapsack. If object i is put
into the knapsack, the profit pi is earned and object i occupies
space si. The 0/1 knapsack problem is formulated as follows:

maximize
X
i2I

pi�i

subject to
X

si�i �M;

8<
: ð3Þ

where �i ¼ 1 if object i is selected, and �i ¼ 0 otherwise.
Three main greedy strategies can be used to solve (3):

. fill the knapsack in order of decreasing densities
ðpi=siÞ,

. fill the knapsack in order of decreasing profits ðpiÞ,

. fill the knapsack in order of increasing weights ðsiÞ.
In [31], it has been shown that this problem is NP-complete,
i.e., if there is a polynomial time algorithm for the knapsack
problem, then one can find polynomial time solutions to a
great variety of problems for which, presently, there is no
known polynomial time solution.

The first polynomial-time approximation scheme for the
0/1 knapsack problem was proposed by Sartaj Sahni in [30].
In [24], Martello and Toth experimentally compared an
heuristic version of their algorithm for the 0/1 knapsack
problem proposed in [23] with the approximate algorithm
of Sartaj. It has been shown that for small values of the
number of objects, the approximate algorithm of Sartaj can
produce better approximations. Since in our context, we are
expecting to have a better aggregated resource consump-
tion, and since we are working on small values of the
number of objects, Sartaj approximate algorithm, though an
old one, appears to be the best approach for us.

In [30], the following approximate algorithm (SS-Greedy)
with parameter k0 was given: consider all combinations
fi1; i2; . . . ; ikg of k objects, k � k0, with total size at most M.
For each combination, construct a candidate by completing
it using a greedy strategy. The solution produced by this
algorithm is the best candidate.

210 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 4, NO. 3, JULY-SEPTEMBER 2011

Fig. 2. Diagram of the approximation scheme.

5 A SCHEDULING ALGORITHM

In Section 3.2, we have proposed a formulation of the

scheduling problem as a sequence of instances of the 0/1

knapsack problem (2). This sequence is implemented as a

loop that is executed as long as the time delay T is not

elapsed and some processes not yet checkpointed. It is

important to note that an application is checkpointed

uninterruptedly. However, the checkpointing of a given

application can be spread over several rounds of the loop.
To achieve this goal, we proceed as follows: 1) at each

iteration, determine, using a greedy strategy, a collection I

of n0 processes, n0 � n, that can be checkpointed simulta-

neously without loss of performance of the checkpointing

device; 2) schedule using a greedy approach, a subset of I

taking into account the time constraint T .
Two criteria can be adopted to sort the set of applica-

tions: 1) in order of decreasing computation time not yet

saved pi; 2) in order of decreasing densities pi=si.
In algorithm ScheduleCkpt below, k0 is the parameter

introduced in Section 4. In step 1, the elapsed time tckpt since

the beginning of the scheduling is initialized to zero, and

the set CKPT is initialized to ; because there is no

checkpointing in progress. The set of candidates E0 is

initialized to E.

Let us now consider the repeat loop. The collection I of

processes that can be checkpointed while preserving the

performance of the system is completed in line 5 according

to the greedy procedure below:

However, among the selected processes I, only those
which can be checkpointed before the deadline T � tckpt,
will be effectively checkpointed. Procedure ks bw does it
according to the approach adopted in [30] with parameter
k0, while giving priority to the processes of CKPT which
are currently being checkpointed.

Line 10 is executed as soon as the checkpointing of some
task i 2 K is ended. Lines 11 to 19 are easy to understand.

Note that procedure index bw max in line 5 solves the
problem stated in box A1 of Fig. 2, and procedure ks bw in
line 6 solves the problem stated in box A2.

The focal point of the complexity of algorithm
ScheduleCkpt is procedure ks bw. At each loop i of the
algorithm ScheduleCkpt, let ri ¼j I j. In [30], it is shown that
the complexity of procedure ks bw is bounded by
Oðk0r

k0þ1
i Þ. If algorithm ScheduleCkpt runs in m loops, then

the complexity of algorithm ScheduleCkpt is in polynomial
time bounded by Oð

Pm
i¼1 k0r

k0þ1
i Þ.

6 EXPERIMENTAL RESULTS

In this section, we describe Grid5000, the environment used
to carry our experiments. Then we present the experimental
curves obtained for the optimal aggregated bandwidth
bwðm;V Þ, necessary to checkpoint m independent tasks of
aggregated size V , and derive by interpolation a quadratic
formula for bwðm;V Þ. This section ends with a detailed
presentation of some checkpointing experiments.

6.1 The Environment

The experiments were conducted on Grid5000, a French
infrastructure distributed on nine sites and dedicated to
research in large-scale parallel and distributed systems. We
have created an image containing all tools needed for
checkpointing experiments (launcher, deamons for shared
file system, checkpointing systems, etc.). This image was
deployed on the reserved nodes, one of them acting as NFS
server. The measurements were conducted on Sophia site
consisting of three clusters, more precisely on Azur cluster
which consists of 72 nodes, where nodes are biprocessors
AMD Opteron 2 GHz, 2 GB RAM, 80 GB local disk (IDE-
amd74xx). These nodes are interconnected with a Gigabit
Ethernet switch and share the/home (mounted sync) of
the server. With the/home synchronously mounted, we are
confident that the data will immediately be written on the
disk, rather than going through a buffer, which could
distort the experiments.

6.2 Estimating the Aggregated Bandwidth

In [34], a large number of experiments were conducted to
assess the performance of the checkpointing device with
BLCR, while storing the results on a unique server’s disk.

For instance, the three data sets of size 12 below were
considered (the data are in MB):

D1 ¼ f105; 451; 135; 241; 329; 172; 211; 281; 117; 494; 113; 301g;
D2 ¼ f20; 390; 57; 129; 425; 13; 330; 19; 211; 120; 493; 312g;
D3 ¼ f412; 272; 320; 231; 455; 317; 401; 395; 429; 492; 201; 212g:

For i ¼ 1; . . . ; 12, the i first blocks were checkpointed and
the experimental bandwidth bwi registered. The curves of

YENKE ET AL.: SCHEDULING OF COMPUTING SERVICES ON INTRANET NETWORKS 211

bwi as a function of i are illustrated in Fig. 3. Hereafter, the

peaks of these curves will be denoted (i; bwi).
This inspired us to interpolate the function ðm;V Þ 7!

bwðm;V Þ by a polynomial of the form

bwðm;V Þ ¼
X

0�i;j;�2

aijm
iV j: ð4Þ

From the data obtained from the large number of experi-

ments conducted in [34] with the application for the multi-

grid computation developed in LIG lab, we then obtained

bwðm;V Þ ¼ am2V 2 þ bm2 þ cV 2 þ dmþ e;

with

a ¼ �0:0155; b ¼ �0:169435; c ¼ 0:0004;

d ¼ 5:027318; and e ¼ 3:753154:

In function bwðm;V Þ, V is expressed in GB.
With these coefficients, the surface representing bw is

given in Fig. 4.
The curves of bwi estimated as a function of i are

illustrated in Fig. 5.
The experimental and the estimated peaks (i, bwi) for the

three examples are shown in Table 1. It can be seen that the

estimations are quite accurate.
Experimental peaks can be seen in Fig. 3 and theoretical

ones in Fig. 5.

6.3 Scheduling Experiment

Hereafter, we denote CTNY S the cumulative computation
time not yet saved of applications checkpointed, RCTNY S
the cumulative computation time not yet saved of applica-
tions not checkpointed, nb ckpt the number of applications
checkpointed, and sche time the time spent by the
scheduling algorithm.

The validation application was written in C. The
scheduling algorithm for checkpointing is implemented as
a module of the multithreaded application server. We have
used the launcher taktuk [3] to load and run the application
client on all clients nodes. The application server is started
on the node acting as NFS server. It takes as input, the
number of processes, their sizes, and the delay T .

The server indicates to nodes clients to execute the
application benchmark with the specified size. The applica-
tion that each node client must execute is a synthetic
benchmark whose all memory pages must be saved. Each
node client receives an order and creates a child process
whose context is replaced by that of the application it
executes while preparing the application to be checkpointed
with BLCR. This allows the application client to obtain the
PID of the process to be checkpointed.

To avoid conflicts that could arise if two different clients
obtained the same PID for the application they must
checkpoint, we have created a directory (the hostname of
the client) for each client on the/home of the server. The
application to be performed by each node client is placed in
that directory, which allows each client to execute and save
the benchmark application in that directory.

After the launching phase, the application server
invokes the scheduling checkpointing module that deter-
mines the processes to be checkpointed according to the

212 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 4, NO. 3, JULY-SEPTEMBER 2011

Fig. 3. Experimental aggregated bandwidths.

Fig. 4. Aggregated bandwidth as function of m and V .

Fig. 5. Estimated aggregated bandwidths.

TABLE 1
Measured and Estimated Peaks

algorithm described in this work. The clients receive an
order to checkpoint application running on the node. At
the end of the checkpoint, they inform the server and
await any other order. When it is no longer possible to
checkpoint any application and when there is no more
ongoing checkpointing, the server informs nodes clients to
kill the process they perform.

In all implementations, the measurements made during
the scheduling were stored in trace files for later use.

In this section, two criteria are considered: selecting the
applications in order of decreasing computation time not
yet saved pi; selecting the applications in order of
decreasing densities pi=si representing the ratio between
computation time not yet saved and memory requirement.

In Tables 2 and 3 below, applications have identical sizes.
Experiments were conducted with n ¼ 50 and T ¼ 300.

It can be seen from Tables 2 and 3 that parallel
checkpointing is better than sequential checkpointing.

In our experiments, for k0 � 3, the time for the schedul-
ing was of the same order of the delay T imposed for
releasing the resources, which is not reasonable. Conse-
quently, in the results that follow, k0 < 3.

In the experiments that follow, a large number of tests
were conducted on different data sets, in three families of
size n ¼ 25, n ¼ 50, and n ¼ 70. In each family, the results

were almost similar. Since the results cannot all be
presented, we exhibit one in each family that illustrates
the performance of the scheduling algorithm. For the three
families, the memory requirements si of applications were
randomly generated between 100 and 500 MB.

Table 4 (respectively, Table 5) gives the performance of
ScheduleCkpt with criterion pi (respectively, criterion pi=si).
n ¼ 25, T ¼ 180 s (3 minutes) and the computation time not
yet saved pi were generated between 60 s (1 minute) and
600 s (10 minutes).

Table 6 (respectively, Table 7) gives the performance of
ScheduleCkpt with criterion pi (respectively, criterion pi=si).
n ¼ 50, T ¼ 300s (5 minutes) and pi were generated
between 300 s (5 minutes) and 1,800 s (30 minutes).

Table 8 (respectively, Table 9) gives the performance of
ScheduleCkpt with criterion pi (respectively, criterion pi=si).
n ¼ 70, T ¼ 420 s (7 minutes) and pi were generated
between 300 s (5 minutes) and 1,800 s (30 minutes).

Tables 4, 5, 6, 7, 8 and 9 show that the quality of the
scheduling algorithm increases with k0. We can also note that
the scheduling time increases with k0 but remains negligible
when compared to the delay T .

On the other hand, it is better to sort the application with
respects to the pi=si.

7 CONCLUSION AND FUTURE WORK

In this paper, we have considered a context where the
available resources of the intranet of an enterprise are used as

YENKE ET AL.: SCHEDULING OF COMPUTING SERVICES ON INTRANET NETWORKS 213

TABLE 2
Parallel Checkpointing with ScheduleCkpt

TABLE 3
Greedy Sequential Checkpointing

TABLE 4
Results of ScheduleCkpt with Criterion pi

TABLE 5
Results of ScheduleCkpt with Criterion pi=si

TABLE 7
Results of ScheduleCkpt with Criterion pi=si

TABLE 6
Results of ScheduleCkpt with Criterion pi

TABLE 8
Results of ScheduleCkpt with Criterion pi

TABLE 9
Results of ScheduleCkpt with Criterion pi=si

a virtual cluster for scientific computation during idle periods
such as nights, weekends, and holidays. Generally, these idle
periods do not permit to completely carry out the computa-
tions. It is therefore necessary to save the context of
uncompleted applications for possible restart, but it is not
always possible to save all of them because of time constraint.
Assuming that these applications are independent, we are
faced with the problem of checkpointing a subset among n
applications running on workstations that must be released
before a delay T , while maximizing the aggregated computa-
tion time not yet saved. We have first proposed for Grid5000,
which was our experimental environment, a function bw that
gives the bandwidth bwðm;V Þ of the system during the
parallel checkpointing of m applications with aggregated
memory requirement V . This function was used to estimate
the checkpointing time, assuming that the bandwidth
bwðm;V Þ is shared equitably among the m tasks. For the
deadline-constrained scheduling problem, we then proposed
an approximation scheme consisting of a loop where in every
pass, we first selectm candidate tasks in order to optimize the
network bandwidth bwðm;V Þ, and we then choose for
checkpointing within the delay T , the candidates that
maximize the aggregated computation time not yet saved.

Finally, we proposed a mechanism where the selection of
candidates follows a greedy strategy. The choice of tasks to
be checkpointed is done according to the Sartaj Sahni
approach that generates all combinations of k0 candidates
(k0 < 3), completes these k0 candidates following a greedy
approach while fulfilling the deadline constraint T , and
chooses the best solution, i.e., the one that maximizes the
aggregated computation time not yet saved. It is important
to note that we did not propose the Sartaj Sahni algorithm
for the selection of candidates because, since the number of
tasks may be large, the execution time of Sartaj Sahni
algorithm may be prohibitive.

Experiments carried on Grid5000 show that our algorithm
performs better that the sequential approach (the aggregated
computation time not yet saved is doubled), and much better
than the totally parallel checkpointing which induces a
drastic decrease of the system bandwidth. Experiments also
show that the running time of the scheduling algorithm,
which is of the order of millisecond, is negligible compared
to the delay T which is of order of few minutes. This means
that the proposed scheduling algorithm does not have a
significant overhead on checkpointing mechanisms.

This paper raises four interesting questions. The first
question concerns a theoretical explanation of the polyno-
mial formula established experimentally for bw on Grid5000.
The second is to compute bw for other networks and then to
see whether there is a general polynomial formula for these
functions. The third question deals with the design of
efficient algorithms for the new types of knapsack problems
presented here and where the constraints are nonlinear. The
last question concerns systems where the checkpoints are
saved on several servers. Indeed, checkpointing on a unique
server, as assumed here, may incur performance bottleneck
and a single point of failure. The problem of checkpointing on
several servers is therefore an important question. Following
the approach introduced here, this problem may need, for
instance in the particular case of two servers, the construction

of function ðm1; V1;m2; V2Þ 7�! bwðm1; V1;m2; V2Þ that gives

the bandwidth of the system when m1 þm2 tasks of

aggregated memory requirement V1 þ V2 are saved in

parallel, m1 on the first server and m2 on the other one.
From a more practical point of view, the next step of this

research will be the integration of our scheduling module in
a batch scheduler such as OAR [8], provided that check-
pointing is realized using BLCR, and any releasing order
comprises a delay that is given to the system to let it
checkpoint the applications currently running on the
targeted resources.

ACKNOWLEDGMENTS

The authors would like to heartily thank the anonymous

reviewers for their insightful comments which have led to

improvements on this work.

REFERENCES

[1] http://computemode.imag.fr, 2011.
[2] seti@home: Search for Extraterrestrial Intelligence at Home,

http://setiathome.ssl.berkeley.edu, 2011.
[3] http://taktuk.gforge.inria.fr, 2011.
[4] http://www-sop.inria.fr/aci/grid/public/library/rapport-grid

5000-v3.pdf, 2011.
[5] http://www.virtualbox.org, 2011.
[6] http://www.vmware.com, 2011.
[7] http://www.xen.org, 2011.
[8] N. Capit, G. Da Costa, Y. Georgiou, G. Huard, C. Martin, G.

Mounie, P. Neyron, and O. Richard, “A Batch Scheduler with
High Level Components,” Proc. Fifth Int’l Symp. Cluster Computing
and Grid (CCGrid ’05), May 2005.

[9] J.T. Daly, “A Higher Order Estimate of the Optimum Checkpoint
Interval for Restart Dumps,” Future Generation Computer Systems,
vol. 22, no. 3, pp. 303-312, 2006.

[10] R.Y. de Camargo, R. Cerqueira, and F. Kon, “Strategies for
Checkpoint Storage on Opportunistic Grids,” IEEE Distributed
Systems Online, vol. 7, no. 9, p. 1, Sept. 2006.

[11] J. Duell, P. Hargrove, and E. Roman, “The Design and
Implementation of Berkeley Lab’s Linux Checkpoint/Restart,”
Technical Report LBNL-54941, Berkeley Lab, Nov. 2003.

[12] F. Dupros, F. Boulahya, J. Vairon, P. Lombard, N. Capit, and J-F.
Mehaut, “IGGI, a Computing Framework for Large Scale
Parametric Simulations: Application to Uncertainty Analysis with
Toughreact,” Proc. Tough Symp., 2006.

[13] C. Eddy and U. Gil, “On the Performance of Parallel Factorization
of Out-of-Core Matrices,” Parallel Computing, vol. 30, no. 3,
pp. 357-375, Feb. 2004.

[14] I. Foster, T. Freeman, K. Keahy, D. Scheftner, B. Sotomayer, and
X. Zhang, “Virtual Clusters for Grid Communities,” Proc. Sixth
IEEE Int’l Symp. Cluster Computing and the Grid (CCGrid ’06),
pp. 513-520, 2006.

[15] W. Gentzsh, “Sun Grid Engine: Towards Creating a Compute
Power Grid,” Proc. Int’l Symp. Cluster Computing and Grid (CCGrid
’01), pp. 35-39, 2001.

[16] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms.
Computer Science, 1978.

[17] A.J. Bryant, “Greedy, Genetic, and Greedy Genetic Algorithms for
the Quadratic Knapsack Problem,” Proc. Conf. Genetic and
Evolutionary Computation (GECCO ’05), pp. 607-614, June 2005.

[18] J. Janakiraman, J.R. Santos, D. Subhraveti, and Y. Turner, “Cruz:
Application-Transparent Distributed Checkpoint-Restart on Stan-
dard Operating Systems,” Proc. Int’l Conf. Dependable Systems and
Network (DSN ’05), June 2005.

[19] R. Kumar, A.H. Joshi, K.K. Banka, and P.I. Rockett, “Evolution of
Hyperheuristics for the Biobjective 0/1 Knapsack Problem by
Multiobjective Genetic Programming,” Proc. 10th Ann. Conf.
Genetic and Evolutionary Computation (GECCO ’08), July 2008.

[20] O. Laadan and J. Nieh, “Transparent Checkpoint-Restart of
Multiple Processes on Commodity Operating Systems,” Proc.
USENIX Ann. Technical Conf., pp. 323-336, June 2007.

214 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 4, NO. 3, JULY-SEPTEMBER 2011

[21] O. Laadan, D. Phung, and J. Nieh, “Transparent Checkpoint-
Restart of Distributed Apications on Commodity Clusters,” Proc.
IEEE Int’l Conf. Cluster Computing, Sept. 2005.

[22] S.M. Larson, C.D. Snow, M.R. Shirts, and V.S. Pande,
“Folding@Home and Genome@Home: Using Distributed Com-
puting to Tackle Previously Intractable Problems in Computa-
tional Biology,” http://arxiv.org/abs/0901.0866v1, 2003.

[23] S. Martello and P. Toth, “A New Algorithm for the 0-1 Knapsack
Problem,” J. Management Science, vol. 34, no. 5, pp. 633-644, 1988.

[24] S. Martello and P. Toth, Knapsack Problems: Algorithms and
Computer Implementations. John Wiley and Sons, 1990.

[25] J.S. Plank, “An Overview of Checkpointing in Uniprocessor and
Distributed Systems, Focusing on Implementation and Perfor-
mance,” Technical Report UT-CS-97-372, Dept. of Computer
Science, Univ. of Tennessee, July 1997.

[26] J.S. Plank, K. Li, and M.A. Puening, “Diskless Checkpointing,”
IEEE Trans. Parallel and Distributed Systems, vol. 9, no. 10, pp. 972-
986, Oct. 1998.

[27] M.O. Rabin, “Efficient Dispersal of Information for Security, Load
Balancing and Fault Taulerence,” J. ACM, vol. 36, no. 2, pp. 335-
348, 1989.

[28] X. Ren, R. Eigenmann, and S. Bagchi, “Failure-Aware Checkpoint-
ing in Fine-Grained Cycle Sharing Systems,” Proc. 16th Int’l Symp.
High performance Distributed Computing (HPDC ’07), June 2007.

[29] E. Roman, “A Survey of Checkpoint/Restart Implementation,”
technical report, Publication LBNL-54942C, Berkeley Lab, 2002.

[30] S. Sahni, “Approximate Algorithms for the 0/1 Knapsack
Problem,” J. ACM, vol. 22, no. 1, pp. 115-124, Jan. 1975.

[31] S. Sahni, “Some Related Problems from Network Flows, Game
Theory and Integer Programming,” Proc. IEEE 13th Ann. Symp.
Switching and Automata Theory, Oct. 1972.

[32] S. Sankaran, J.M. Squyres, B. Barrett, and A. Lumsdaine, “The
LAM/MPI Checkpoint/Restart Framework: System-Initiated
Checkpointing,” Proc. LACSI Symp., Oct. 2003.

[33] D. Thain, T. Tannenbaum, and M. Livny, “Distributed Computing
in Practice: The Condor Experience,” Concurrency—Practice and
Experience, vol. 17, nos. 2-4, pp. 323-356, 2004.

[34] B.O. Yenke, “Prédiction Des Performances Des Opérations de
Sauvegarde/Reprise Sur Cluster Virtuel,” RENPAR ’18/SympAAA
2008/CFSE ’3/Fribourg, Suisse, du 11 au 13 février, 2008.

[35] A. Ziv and J. Bruck, “An On-Line Algorithm for Checkpoint
Placement,” IEEE Trans. Computer, vol. 46, no. 9, pp. 976-985,
Sept. 1997.

YENKE ET AL.: SCHEDULING OF COMPUTING SERVICES ON INTRANET NETWORKS 215

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

